2 resultados para transposon

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los suelos ultramáficos, que poseen elevadas concentraciones de níquel, cobalto y cromo de manera natural, son fuente de bacterias resistentes a altas concentraciones de metales. Se realizó la caracterización físico-química de seis suelos ultramáficos del suroeste europeo, seleccionándose un suelo de la región de Gorro, Italia, como el más adecuado para aislar bacterias endosimbióticas resistentes a metales. A partir de plantas-trampa de guisante y lenteja inoculados con suspensiones de ese suelo, se obtuvieron 58 aislados de Rhizobium leguminosarum bv. viciae (Rlv) que fueron clasificados en 13 grupos según análisis de PCR-RAPDs. Se determinó la resistencia a cationes metálicos [Ni(II), Co(II), Cu(II), Zn(II)] de una cepa representante de cada grupo, así como la secuencia de los genomas de las cepas que mostraron altos niveles (UPM1137 y UPM1280) y bajos niveles (UPM1131 y UPM1136) de tolerancia a metales. Para identificar mecanismos de resistencia a metales se realizó una mutagénesis al azar en dicha cepa mediante la inserción de un minitransposón. El análisis de 4313 transconjugantes permitió identificar 14 mutantes que mostraron una mayor sensibilidad a Ni(II) que la cepa silvestre. Se determinó el punto de inserción del minitransposón en todos ellos y se analizaron en más detalle dos de los mutantes (D2250 y D4239). En uno de los mutantes (D2250), el gen afectado codifica para una proteína que presenta un 44% de identidad con dmeF (divalent efflux protein) de Cupriavidus metallidurans. Cadena arriba de dmeF se identificó un gen que codifica una proteína con un 39% de identidad con el regulador RcnR de Escherichia coli. Se decidió nombrar a este sistema dmeRF, y se generó un mutante en ambos genes en la cepa Rlv SPF25 (Rlv D15). A partir de experimentos de análisis fenotípico y de regulación se pudo demostrar que el sistema dmeRF tiene un papel relevante en la resistencia a Ni(II) y sobre todo a Co(II) en células en vida libre y en simbiosis con plantas de guisante. Ambos genes forman un operón cuya expresión se induce en respuesta a la presencia de Ni(II) y Co(II). Este sistema se encuentra conservado en distintas especies del género Rhizobium como un mecanismo general de resistencia a níquel y cobalto. Otro de los mutantes identificados (D4239), tiene interrumpido un gen que codifica para un regulador transcripcional de la familia AraC. Aunque inicialmente fue identificado por su sensibilidad a níquel, experimentos posteriores demostraron que su elevada sensibilidad a metales era debida a su sensibilidad al medio TY, y más concretamente a la triptona presente en el medio. En otros medios de cultivo el mutante no está afectado específicamente en su tolerancia a metales. Este mutante presenta un fenotipo simbiótico inusual, siendo inefectivo en guisantes y efectivo en lentejas. Análisis de complementación y de mutagénesis dirigida sugieren que el fenotipo de la mutación podría depender de otros factores distintos del gen portador de la inserción del minitransposón. ABSTRACT Ultramafic soils, having naturally high concentrations of nickel, cobalt and chrome, are potential sources of highly metal-resistant bacteria. A physico-chemical characterization of six ultramafic soils from the European southwest was made. A soil from Gorro, Italy, was chosen as the most appropriated for the isolation of heavy-metal-resistant endosymbiotic bacteria. From pea and lentil trap plants inoculated with soil suspensions, 58 isolates of Rhizobium leguminosarum bv. viciae (Rlv) were obtained and classified into 13 groups based on PCR-RAPDs analysis. The resistance to metallic cations [Ni(II), Co(II), Cu(II), Zn(II)] was analyzed in a representative strain of each group. From the results obtained in the resistance assays, the Rlv UPM1137 strain was selected to identify metal resistance mechanism. A random mutagenesis was made in UPM1137 by using minitransposon insertion. Analysis of 4313 transconjugants allowed to identify 14 mutants with higher sensitivity to Ni(II) than the wild type strain. The insertion point of the minitransposon was determined in all of them, and two mutants (D2250 and D4239) were studied in more detail. In one of the mutants (D2250), the affected gene encodes a protein with 44% identity in compared with DmeF (divalent efflux protein) from Cupriavidus metallidurans. Upstream R. leguminosarum dmeF, a gene encoding a protein with 39% identity with RcnR regulator from E. coli was identified. This protein was named DmeR. A mutant with both genes in the dmeRF deleted was generated and characterized in Rlv SPF25 (Rlv D15). From phenotypic and regulation analysis it was concluded that the dmeRF system is relevant for Ni(II) and specially Co(II) tolerance in both free living and symbiotic forms of the bacteria. This system is conserved in different Rhizobium species like a general mechanism for nickel and cobalt resistance. Other of the identified mutants (D4239) contains the transposon insert on a gene that encodes for an AraC-like transcriptional regulator. Although initially this mutant was identified for its nickel sensitivity, futher experiments demonstrated that its high metal sensitivity is due to its sensitivity to the TY medium, specifically for the tryptone. In other media the mutant is not affected specifically in their tolerance to metals. This mutant showed an unusual symbiotic phenotype, being ineffective in pea and effective in lentil. Complementation analysis and directed mutagenesis suggest that the mutation phenotype could depend of other factors different from the insertion minitransposon gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A collection of Rhizobium leguminosarum bv. viciae strains isolated from ultramafic and contaminated soils in Italy and Germany, respectively, was analyzed for resistance to nickel and cobalt ions. These assays led to the identification of strain UPM1137, which is able to grow at high concentrations of nickel and cobalt. In order to identify genetic systems involved in the homeostasis to these metals, a random mutagenesis was carried out in UPM1137 by inserting a Tn5-derivative minitransposon. As a result 4313 transconjugants were obtained, being 39 of them (0.90%) unable to grow at 1.5 mM NiCl2. The identification of the transposon insertion site in these mutants showed that the disrupted genes encode proteins belonging to different functional categories, where the secreted and membrane proteins were the most numerous. The analysis of heavy metal resistance and phenotypes in symbiotic and free –living cells will define the contribution of these genes to metal homeostasis.